精品欧美无遮挡一区二区三区在线观看,中文字幕一区二区日韩欧美,久久久久国色αv免费观看,亚洲熟女乱综合一区二区三区

        ? 首頁 ? 百科知識 ?對耳蝸功能的保護(hù)作用

        對耳蝸功能的保護(hù)作用

        時間:2023-07-03 百科知識 版權(quán)反饋
        【摘要】:此通路的關(guān)鍵酶均定位于耳蝸。此3個亞型的NOS由于分布的不同,而對機(jī)體功能產(chǎn)生不同的調(diào)節(jié)作用。因cGMP激活的蛋白激酶cGK-1通過磷酸化過程抑制細(xì)胞內(nèi)磷脂酶C,降低磷酸肌醇IP3的含量。總之,第二信使廣泛存在于機(jī)體,在耳蝸中的第二信使對耳蝸功能的調(diào)節(jié)起到重要作用,在研究IHC與OHC之間,毛細(xì)胞與支持細(xì)胞之間的細(xì)胞間通訊,探討第二信使的變化更為有意義。

        (一)NO/cGMP通路活化過程

        前面已對NO/cGMP通路分別對血管紋、支持細(xì)胞以及傳入、傳出神經(jīng)遞質(zhì)調(diào)節(jié)進(jìn)行了描寫,本節(jié)總結(jié)歸納NO/cGMP通路的關(guān)鍵酶在耳蝸內(nèi)表達(dá)及活化過程。此通路的關(guān)鍵酶均定位于耳蝸。分布于耳蝸的一氧化氮合酶(NO synthases,NOS)的亞型是神經(jīng)元性一氧化氮合酶(neuronal NOS,nNOS)和血管內(nèi)皮性一氧化氮合酶(eNOS)。其中nNOS定位于內(nèi)外毛細(xì)胞、螺旋神經(jīng)節(jié)細(xì)胞及支配內(nèi)外毛細(xì)胞的神經(jīng)纖維;eNOS則主要定位于螺旋韌帶血管的內(nèi)皮細(xì)胞、血管紋血管的內(nèi)皮細(xì)胞上。sGC和cGK-1在螺旋韌帶血管和血管紋血管的外皮細(xì)胞、Corti器的支持細(xì)胞(Hensen細(xì)胞、Deiters細(xì)胞)螺旋神經(jīng)節(jié)細(xì)胞及傳出傳入神經(jīng)纖維上表達(dá)。

        在NO/cGMP系統(tǒng)中有3個關(guān)鍵酶:一氧化氮合酶(NOS)、可溶性環(huán)磷酸鳥苷合酶(sGC)和環(huán)磷酸鳥苷依賴性蛋白激酶-1 (cGK-1)。NO/cGMP通路的活化過程是:當(dāng)外界信息分子與其特異受體結(jié)合,引起Ca2+內(nèi)流時,由Ca2+/CaM激活NOS,NOS在黃素腺嘌呤二核苷酸(FAD),黃素腺嘌呤單核苷酸(FMN)四氫生物蝶呤(BH4)及還原型尼克酰胺嘌呤二核苷酸(NADPH)等轉(zhuǎn)氫、轉(zhuǎn)電子體的協(xié)同作用下,以L-精氨酸為底物合成NO,NO作為一種氣體分子可自由通過細(xì)胞膜,其作用范圍只與其衰變時間有關(guān)。NO通過自由擴(kuò)散方式透過細(xì)胞膜后,與周圍細(xì)胞胞質(zhì)內(nèi)的sGC結(jié)合并激活之,活化后的sGC以三磷酸鳥苷(GTP)為底物合成cGMP,后者與cGK-1結(jié)合。被激活的cGK-1通過磷酸化過程調(diào)節(jié)細(xì)胞功能(圖13-1)。

        圖13-1 NO/cGMP通路作用過程

        NOS有3個亞型,即神經(jīng)元性一氧化氮合酶(nNOS)、誘導(dǎo)型一氧化氮合酶(iNOS)和血管內(nèi)皮性一氧化氮合酶(eNOS)。此3個亞型的NOS由于分布的不同,而對機(jī)體功能產(chǎn)生不同的調(diào)節(jié)作用。其中,nNOS主要分布于神經(jīng)系統(tǒng),由其產(chǎn)生的NO參與神經(jīng)遞質(zhì)的釋放和神經(jīng)信號的傳遞;iNOS則主要分布于肥大細(xì)胞等免疫細(xì)胞中,所產(chǎn)生的NO是作為強(qiáng)氧化劑來殺滅微生物;而eNOS主要在循環(huán)系統(tǒng)中發(fā)揮作用,它與擴(kuò)張血管的激素受體共同表達(dá)于血管內(nèi)皮細(xì)胞。當(dāng)擴(kuò)張血管的激素與其受體結(jié)合時,引起的Ca2+內(nèi)流可激活eNOS,由此產(chǎn)生的NO可以擴(kuò)張血管,增加血流量,當(dāng)由sGC合成的cGMP發(fā)揮生理功能后,可被cGMP特異的磷酸二酯酶催化水解,此磷酸二酯酶是Ca2+/CaM依賴性的。當(dāng)Ca2+濃度增加時,既可促進(jìn)sGC合成cGMP,又可加強(qiáng)磷酸二酯酶降解cGMP。由此可見,Ca2+在NO/cGMP通路的信息傳遞過程中發(fā)揮著關(guān)鍵作用,它一方面激活NOS產(chǎn)生NO,進(jìn)而增加cGMP的含量;另一方面又同時激活Ca2+/CaM依賴性的磷酸二酯酶,而下調(diào)NO引發(fā)的胞內(nèi)cGMP增高。

        (二)精氨酸對Ca2+-ATP酶抑制劑的拮抗作用

        我們曾采用全耳蝸灌流術(shù),灌流Ca2+-ATP酶抑制劑,使CAP閾移26dB,然后在灌流Ca2+-ATP酶抑制劑的同時加入L-精氨酸,發(fā)現(xiàn)CAP閾移減小了10dB,可見精氨酸通過NO/cGMP通路可部分拮抗Ca2+-ATP酶抑制劑的作用。

        Ca2+-ATP酶是細(xì)胞排出Ca2+的重要方式,是維持胞內(nèi)Ca2+平衡的Ca2+泵,且廣泛分布于血管紋血管壁的細(xì)胞上,通過抑制Ca2+-ATP酶的功能將導(dǎo)致胞內(nèi)Ca2+快速升高,從而造成內(nèi)、外毛細(xì)胞能量供應(yīng)減少,使內(nèi)、外毛細(xì)胞因能量缺乏而不能維持正常的細(xì)胞內(nèi)外離子平衡,必將引起CM幅度下降、CAP閾值提高。另外,因EP的正常值反映內(nèi)淋巴高K的狀態(tài),當(dāng)血液供應(yīng)減少時,維持正常EP值的血管紋Na-K-ATP酶由于能量供應(yīng)缺乏,使其排K功能下降,進(jìn)而引起EP下降。由于EP的變化引起CM、CAP內(nèi)環(huán)境的變化,故必引起CM幅度下降、CAP閾值提高。

        當(dāng)加入NO的底物——L-精氨酸以激活NO/cGMP通路,由位于血管紋血管內(nèi)皮細(xì)胞內(nèi)的eNOS催化合成NO,后者通過自由擴(kuò)散方式進(jìn)入外周細(xì)胞,并與其內(nèi)的sGC結(jié)合生成cGMP,后者則激活cGK-1?;罨蟮腸GK-1通過磷酸化過程抑制Ca2+進(jìn)入細(xì)胞,并促進(jìn)Ca2+庫吸收Ca2+及向細(xì)胞外排出Ca2+,使胞內(nèi)升高的Ca2+濃度降低。Watanabe等發(fā)現(xiàn)血管紋血管外周細(xì)胞內(nèi)有粗細(xì)不同的平滑肌肌纖維樣纖維。當(dāng)血管外周細(xì)胞內(nèi)Ca2+濃度增加時,足夠數(shù)量的Ca2+與細(xì)肌絲上的肌鈣蛋白結(jié)合,在ATP的參與下,粗、細(xì)肌絲間發(fā)生相對位移,引起收縮反應(yīng),造成血管管徑縮小。此收縮反應(yīng)的前提是Ca2+濃度高于10-5 mol/L。因cGMP激活的蛋白激酶cGK-1通過磷酸化過程抑制細(xì)胞內(nèi)磷脂酶C,降低磷酸肌醇IP3的含量。這一變化可使細(xì)胞內(nèi)Ca2+濃度下降,肌凝蛋白輕鏈激酶的活性使降低抑制了肌凝蛋白輕鏈磷酸化,故改善了由于Ca2+超載造成的血管痙攣。

        結(jié)果提示,L-精氨酸(NO的底物)通過激活NO/cGMP通路改善病理條件下(胞內(nèi)Ca2+升高)的耳蝸血液循環(huán),為臨床治療相關(guān)的耳蝸疾病提供一個新途徑。

        總之,第二信使廣泛存在于機(jī)體,在耳蝸中的第二信使對耳蝸功能的調(diào)節(jié)起到重要作用,在研究IHC與OHC之間,毛細(xì)胞與支持細(xì)胞之間的細(xì)胞間通訊,探討第二信使的變化更為有意義。關(guān)鍵是要做一個包括IHC、OHC和支持細(xì)胞在內(nèi)的活體標(biāo)本,通過共聚焦激光顯微鏡可觀察第二信使的運行傳遞規(guī)律,其次,對于NO/cGMP通路中的NO其雙重性必須充分認(rèn)識,小量的NO起到第二信使的作用,而過量的NO則是氧自由基并產(chǎn)生毒性,在細(xì)胞間NO如何平衡調(diào)節(jié),是需進(jìn)一步深入探討的問題。

        (李興啟 賈學(xué)斌 侯志強(qiáng))

        參考文獻(xiàn)

        1 Abbeele TV,Huy PT,Teulon J.Modulation by purines do calcium-activated non-selective cation channels in the outer hair cell of the guinea pig cochlea.Journal of physiology,1996,494(1):77

        2 Bortolozzi M,Lelli A,Mammano F,et al.Calium microdomains at presynaptic acive zones of vertebrate hair cells unmasked by stochastic deconvolution.Cell Calcium,2008,44(2):158

        3 Bredt DS,Snyder SH.Isolation of nitric oxide synthetase,a calmodulin-requiring enzyme.Proc Natl Acad Sci USA,1990,87(2):682

        4 Bredt DS,Hwang PM,Glatt CE,et al.Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450reductase.Nature,1991,351(6329):714

        5 Bredt DS,Swyder SH.Transient nitric oxide synthase neurons in embryonic cerebral cortical plate,sensory ganglia,and olfactory epithelium.Neuron,1994,13(2):301

        6 Brenman JE,Bredt DS.Nitric oxide signaling in the nervous system.Methods Enzymol,Review,1996,269:119

        7 Brenman JE,Chao DS,Gee SH,et al.Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95and alpha1-syntrophin mediated by PDZ domains.Cell,1996,84(5):757

        8Chen C.Hyperpolarization-activated current(Ih)in primary auditory neurons.Hear Res,1997,110(1-2):179

        9 Cho HJ,Xie QW,Calaycay J,et al.Calmodulin is a subunit of nitric oxide synthase from macrophages.J Exp Med,1992,176(2):599

        10 Coling DE,Schacht J.Second messengers in the cochlea.Acta Otolaryngol,1995,115(2):218

        11 Crouch JJ,Schultr BA.Expression of plasma membrane Ca-ATPase in the adult and developing gerbil cochlea.Hear Res,1995,92(1-2):112

        12 Erostegui C,Norris CH,Bobbin RP.In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells.Hear Res,1994,74 (1-2):135

        13 Fessenden JD,Schacht J,The nitric oxide/cyclic GMP pathway:A potential major regulator of cochlear physiology.Hear Res,1998,118:168

        14 Fessenden JD,Alstchuler RA,Srasholtz AF.Nitric oxide/cyclic guanosine monophosphate pathway in the peripheral and central auditory system of the rat.J Comp Neurol,1999,404(1):52

        15 Flock A,F(xiàn)lock B,F(xiàn)ridberger A,et al.Supporting cells contribute to control of hearing sensitivity.J Neurosci,1999,19(11):4498

        16 Franz P,Hauser KC.Localization of nitric oxide synthaseⅠandⅢin the cochlea.Acta otolaryngo,1996,116:726

        17 Frolenkov GI,Mammano F,Belvantseva IA,et al.Two distinct Ca2+-dependent signaling pathways regulate the motor output of cochlear outer hair cells.J Neurosci,2000,20(16):5940

        18 Fuchs PA,Murrow BW.Cholinergic inhibition of short(outer)hair cells of the chick’s cochlea.J Neurosci,1992,12(3):800

        19 Gosepath K,Gath I,Maurer J,et al.Charaterizatioan of nitric oxide synthase isoforms expressed in different structures of the guinea pig cochlea.Brain Res,1997,747:26

        20 Gossman DG,Zhao HB.Hemichannel-mediated inositol 1,4,5-triphosphate(IP3)release in the cochlea:a novel mechanism of IP3intercellular signaling.Cell Commun Adhes,2008,15(4):305 21Heinrich UR,Maurer J,Gosepath K,et al.Immunoelectron microscopic localization of nitric oxide s synthaseⅢin the guinea pig organ of cortic.Eur Arhtorhinolaryngol,1998,255(10):438

        22 Heinrich UR,Selivanova O,F(xiàn)eltens R,et al.Endothelial nitric oxide synthase upregulation in the guinea pig organ of Corti after acute noise trauma.Brain Res,2005,1047(1):85

        23 Inagaki A,Ugawa S,Yamamura H,et al.The CaV 3.1T-type Ca2+channel contributes to voltage-dependant calcium currents in rat outer hair cells.Brain Res,2008,1201:68

        24 Jagger DJ,Ashmore JF.Related Articles,Links The fast activating potassium current,I(K,f),in guinea-pig inner hair cells is regulated by protein kinase A.Neurosci Lett,1999,263(2-3):145

        25 Jones EM,Gray-Keller M,F(xiàn)ettiplace R.The role of Ca2+-activated Kchannel spliced variants in the tonotopic organization of the turtle cochlea.J Phsiol,1999,518:653

        26 Kass GE,Duddy SK,Moore GA,et al.2,5-Di-(tert-butyl)-1,4-benzohydroquinone rapidly elevates cytosolic Ca2+concentration by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+pool.J Biol Chem,1989,264(26):15192

        27 Kazuhiko N.Effect of endoplasmic Ca2+-ATPase inhibitors on cochlear potentials in the guinea pig.Acta otolaryngol(stockh),1998,118:198

        28 Kurenny DS,Moroz LL.Modulation of ion channels in rod photoreceptors by nitric oxide.Neuron,1994,13(2):315

        29 Lagostena L,Ashmore JF,Kachar B,et al.Prinergic control of intercellular communication between Hensen’s cells of the guinea pig cochlea.J Physiol,2001,531:693

        30 Leng G.Related Articles,Links The Davis theory:a review,and implications of recent electrophysiological evidence.Hear Res,1980,3(1):17

        31 Leng G.The Davis theory:a review and implications of recent electrophysiological evidence. Hear Res,1980,3(1):17

        32 Lloret S,Martinez J,Moreno JJ.Influence of calcium on arachidonic acid mobilization by murine resident peritoneal macrophages.Arch Biochem Biophys,1995,323(2):251

        33 Lock A,F(xiàn)lock B,F(xiàn)ridberger A,et al.Supporting cells contribute to control of hearing sensitivity.J Neurosci,1999,19(11):4498

        34 Lohuis PJ,Klis SF,Klop WM,et al.Signs of endolymphatic hydrops after perilymphatic perfusion of the guinea pig cochlea with cholea toxin;apharmacological model of acute endolymphatic hydrops.Hear Res,1999,137(1-2):103

        35 Mammano F,Bortolozzi M,Ortolano,et al.Ca2+sigmaling in the inner ear.Physiology,2007,22:131

        36 Marletta Nitric oxide synthase structure and mechanism.J Biol Chem,1993,15,268(17):12231

        37 MatsunobuT,Schacht J.Nitnric oxide/cyclic GMP pathway attenuates ATP-evoked intracgllular calium increase in supporting cells of the guinea pig cochlea.JCOMPAR NEUBIO,2000,423:452

        38 Palmer RM,F(xiàn)errige AG,Moncada S.Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.Nature,1987,327(6122):524

        39 Piazza V,Ciubotaru CD,Gale JE,et al.Purinergic signaling and intercellular Ca2+wave propagation in the organ of Corti.Cell Calcium,2007,41(1):77

        40 Pickles JO.Frequency threshold curves and simultaneous masking functions in high-threshold,broadly-tuned,fibres of the guinea pig auditory nerve.Hear Res,1984,16(1):91

        41 Pollock JS,F(xiàn)orstermann U,Mitchell JA,et al.Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells.Proc Natl Acad Sci USA,1991,88(23):10480

        42 Ramakrishnan NA,Drescher MJ,Sheikhali SA, et al.Molecular identification of an N-type Ca2+channel in saccular hair cells.Neuroscience,2006,139(4):1417

        43 Ricci AJ,F(xiàn)ettiplace R.Calcium permeateon of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph.J Physiol,1998,506:159

        44 Ricci AJ,Gray-Keller M,F(xiàn)ettiplace R.Related Articles,Links Tonotopic variations of calcium signalling in turtle auditory hair cells.J Physiol,2000,524(Pt 2):423

        45 Roberts WM,Jacobs RA,Hudspeth AJ.Colocalization of ion channels involved in frequency presynaptic active zones of hair cells.J Neurosci,1990,10(11):3664

        46 Ruan RS,Leong SK,Yeoh KH,et al.Localization of nitric oxide synthase and NADPH-diaphrase in guinea pig and human cochlea.J Hirnforsch,1997,38(4):433

        47 Ruth Anne Eatock.Adaptation in hair cells.Annu Rev Neurosci,2000,23:285

        48 Schmidt HH,Walter U.No at wark.Cell,1994,78:919

        49 Schulte BA.Immunohistochemical localization of intracellular Ca-ATPase in outer hair cells,neurons and fibrocytes in the adult and developing inner ear.Hear Res,1993,65(1-2):262

        50 Shen J,Harada N,Nakazawa H,et al.Role of nitric oxide on ATP-induced Ca2+signaling in outer hair cells of the guinea pig cochlea.Brain Res,2006,1081(1):101

        51 Stuehr DJ,Marletta MA.Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection,lymphokines,or interferon-gamma.J Immunol,1987,139(2):518

        52 Tadashi Doi and Harunori Ohmori.Acetychlione increases intracellular Ca2+concentration and hyperpolarizes the guinea pig outer hair cell.Hear Res,1993,67:179

        53 Tian F,F(xiàn)essenden JD.Cyclic GMP-dependent protein kinase-I in the guinea pig cochlea.Hear Res,1999,131(1-2):63

        54 Tu TY,Chiu JH,Shu CH,Lien CF.cAMP me-diates transepithelial Kand Natrandport in a strial marginal cell line.Hear Res,1999,127:149

        55 Wu HH,Willians CV,Mcloon SC.Involvement of nitric oxide in the elimination of a.transient retinotectal projection in development.Science,1994,265(5178):1593

        56 Xie D,Hu P,Xiao Z,et al.Submits of voltagegated calcium channels in murine spiral ganglion cells.Acta Otolaryngol,2007,127(1):8

        57 Yukawa H,Shen J,Harada N,et al.Acute effects of glucocorticoids on ATP-induced Ca2+mobilization and nitric oxide production in cochlear spiral ganglion neurons.Neuroscience, 2005,130(2):485

        58 賈學(xué)斌,李興啟,張 瀛.第二信使與耳蝸功能.國外醫(yī)學(xué)·耳鼻咽喉科學(xué)分冊,2003,27(4):227

        59 李興啟,賈學(xué)斌,曹效平,等.一氧化氮-環(huán)磷酸鳥苷通路對耳蝸靈敏度的調(diào)節(jié).中華耳鼻咽喉頭頸外科雜志,2006,41(7):532

        60 趙立東,李興啟.耳蝸中的ATP和一氧化氮/環(huán)磷酸鳥苷途徑.中華耳學(xué)科雜志,2003,1(2):64

        61 張素珍,孫建和,趙承軍,等.豚鼠膜迷路積水模型耳蝸Ca2+-ATP酶的變化.中華耳鼻咽喉科雜志,1999,34(1):8

        免責(zé)聲明:以上內(nèi)容源自網(wǎng)絡(luò),版權(quán)歸原作者所有,如有侵犯您的原創(chuàng)版權(quán)請告知,我們將盡快刪除相關(guān)內(nèi)容。

        我要反饋