最速下降線
最速下降線
Brachistochrone
伽利略在1630年提出一個(gè)問題:“一個(gè)質(zhì)點(diǎn)在重力作用下,從一個(gè)給定點(diǎn)到不在它垂直下方的另一點(diǎn),如果不計(jì)摩擦力,問沿著什么曲線滑下所需時(shí)間最短?”他說這曲線是圓,可是這是一個(gè)錯(cuò)誤的答案。瑞士數(shù)學(xué)家約翰.伯努利在1696年再次提出這個(gè)最速下降線的問題(problemofbrachistochrone),征求解答。次年已有多位數(shù)學(xué)家得到正確答案,其中包括牛頓、萊布尼茲、洛必達(dá)和伯努利家族的成員。這個(gè)問題的正確答案是連接兩個(gè)點(diǎn)上凹的唯一一段旋輪線。
圖1 最速下降線演示儀
實(shí)驗(yàn)裝置
本演示儀器有三條固定的軌道:一條直線、一條任意曲線和一條下凹的擺線,擺線看上去似乎是最長的。這三條軌道的起點(diǎn)和終點(diǎn)是完全相同的,如圖1所示。
現(xiàn)象觀察
把三個(gè)球分別放在三條軌道頂端的擋板前,用手拿開擋板,三球從頂端同時(shí)下滑。結(jié)果表明,雖然下凹曲線軌道的路線最長,但沿著它下降的球反而最先到達(dá)終點(diǎn)。
現(xiàn)象解密
物體沿軌道下降的速度不僅取決于軌道的長度,而且還與軌道的形狀有關(guān)。重力的作用使三個(gè)球下落,球所受重力沿運(yùn)動(dòng)軌跡切線方向的分量越大,下落的速度就越快。而擺線軌跡是一條圓滾曲線,重力在它陡峭的切線方向上的分量比較大,球下落速度比較快,先到達(dá)終點(diǎn);而直線和另一條曲線的軌道雖然短,但球下落的速度較擺線上的球慢,后到達(dá)終點(diǎn)。
那么,這條最速下降線的軌跡又是什么呢?
圖2 A、B固定的折線路徑
假設(shè)球與軌道間無摩擦力,球下落的運(yùn)動(dòng)路徑為如圖2所示的AOB。若小球由A到O的速度是V1,由O到B的速度是V2,則從A到B所花的時(shí)間:
所花時(shí)間最短,需取極值,即滿足
由此可得
如果路徑變成如圖3的折線,
圖3 A、B固定的多折線路徑
因?yàn)?img class="row2" src="http://image.guayunfan.com/attached/image/20200309/19377/c701ae39-3b97-425e-b914-f1c2599cf20f.jpg" alt="img83">
同理可得
所以
如果將A、B之間的路徑越折越多,即越切越細(xì),則可以發(fā)現(xiàn),在每一點(diǎn)會(huì)有=k,這里k為常數(shù)。
又因?yàn)槊恳稽c(diǎn)的V=,這里取y向下為正,如圖4所示。
圖4 A、B固定的曲線路徑
得
由此可得
其中c為常數(shù)。
令
可得
因此
積分得
由初始條件
圖5 旋輪線
所以c1=0
代入得
再令
最后得
這是旋輪線方程,如圖5所示。因此結(jié)論是:最速下降線的軌跡是旋輪線。
知識拓展
當(dāng)一個(gè)圓沿著一條直線滾動(dòng)時(shí),圓邊上一點(diǎn)的軌跡叫做旋輪線或擺線。擺線具有很重要的性質(zhì):等時(shí)性。即若一質(zhì)點(diǎn)從一段擺線任意點(diǎn)出發(fā),在重力作用下沿?cái)[線向下滑,則此質(zhì)點(diǎn)到達(dá)最低點(diǎn)所需的時(shí)間與出發(fā)點(diǎn)的位置無關(guān)。擺線另一有趣的性質(zhì)是:質(zhì)點(diǎn)在重力場中沿著擺線從高處某一點(diǎn)滑到低處的另一點(diǎn)所用的時(shí)間,比沿著任何曲線(包括直線)在同樣兩點(diǎn)間滑下的時(shí)間都短。所以擺線也稱為最速下降線。
這個(gè)解答所蘊(yùn)含的基本觀點(diǎn)的發(fā)展,導(dǎo)致了一門新學(xué)科——變分學(xué)的產(chǎn)生。歐拉從現(xiàn)實(shí)生活中的極大、極小問題提煉出數(shù)學(xué)問題和解題技巧,創(chuàng)立了“變分學(xué)”這一新的數(shù)學(xué)分支。要得到最速下降線問題的完備解答,需要用到變分學(xué)的知識。
思考題
1.最速下降線軌道的參數(shù)方程是什么?
2.你能夠運(yùn)用變分學(xué)知識,求出質(zhì)點(diǎn)在重力作用下,從一個(gè)給定點(diǎn)到不在它垂直下方的另一點(diǎn)的最快時(shí)間嗎?
3.在騎自行車的時(shí)候,車輪上粘著一張?zhí)羌?,糖紙的運(yùn)動(dòng)軌跡就是最速下降線的軌跡,為什么?
免責(zé)聲明:以上內(nèi)容源自網(wǎng)絡(luò),版權(quán)歸原作者所有,如有侵犯您的原創(chuàng)版權(quán)請告知,我們將盡快刪除相關(guān)內(nèi)容。